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Abstract  
This report consists of the Deliverable “D3.1: Federated Learning framework” of the 
European HORIZON-CL4-2021-DIGITAL-EMERGING-01 “Alchimia”. The scope of this 
deliverable is to analyse the Federated Learning possibilities and present the framework 
used in the project. 

D3.1 includes an extensive analysis of the state of the art focusing on the type of Federated 
Learning system, its challenges, aggregation algorithms and open-source solutions 
available. In addition, the privacy-preserving concept and the main techniques that can be 
applied in a Federated Learning system are provided together with a comparison of the 
open-source tools. Later, the Federated Learning framework selected for the support of 
the ML model training is presented. The framework has been developed with the purpose 
of covering the needs of the existing architecture for the Alchimia system up to the 
present time. Concludingly, an example of a Deep Learning model, which was trained to 
utilize the Federated Learning framework, is described, accompanied by a presentation 
of the outcomes achieved. 

Statement of originality 
This deliverable contains original unpublished work except where clearly indicated 
otherwise. Acknowledgement of previously published material and of the work of others 
has been made through appropriate citation, quotation, or both. 
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1 Introduction 
In the pursuit of a sustainable environment, the convergence of Artificial Intelligence (AI) 
and Industry 4.0 has emerged to drive efficiency, resource optimization and environmental 
preservation. This transformative combination allows the exploration of innovative 
solutions to address pressing ecological challenges while propelling society towards a 
greener future and improving processes’ efficiency. The key elements introduced by 
Industry 4.0, including seamless connectivity, enhanced interoperability, and intelligent 
automation, have paved the way for cloud computing, big data analytics, and increased 
processing power to facilitate the integration of AI on an unprecedented scale. These 
advancements have unlocked a new frontier, enabling AI adoption in practically all 
sectors, including metallurgical. However, the expansion of AI has grown the concerns 
surrounding data privacy. As AI technologies rely on vast amounts of data for training, the 
collection and storage of sensitive information raise security issues.  

Conventional AI-driven solutions need to have the whole data stored in a central server 
so that the model can be trained, this supposes the centralization of all data, which can 
lead to privacy problems, overhead in data transfer, and assumptions of homogeneity in 
the data, which may not occur when data is captured in different places. 

Federated Learning (FL), introduced by Google [1], solves these concerns. By adopting a 
decentralized training approach, FL allows AI model training to occur locally at the source 
where data is captured, eliminating the need for centralization of the entire dataset. This 
decentralized training paradigm ensures that raw data is not shared, thereby preserving 
data privacy, and protecting sensitive information. As a result, FL overcomes the privacy 
problem inherent in traditional AI systems while maximizing the utility of distributed data 
sources. 

Furthermore, FL operates on a collaborative model, enabling multiple entities, such as 
edge devices or individual facilities, to collaboratively train a shared global model. It also 
reduces data transfer overhead since only local model weights are shared with the central 
server. Then, the central server aggregates all local weights creating a global model which 
is again shared with the trainers. This way, the homogeneity assumption is avoided since 
local models are trained on local data which can present slight distribution differences.  

However, model sharing can lead to some security inconveniences such as model 
inversion attacks that consists of extracting information from aggregated model which 
could reveal sensitive information about individual data. In addition, ensuring the 
confidentiality and integrity of model weights during transmission is essential to prevent 
”man-in-the-middle” attacks, model stealing or model poisoning. To address these 
security risks, techniques such as differential privacy, secure aggregation protocols and 
encryption can enhance the privacy and security of the FL system.   

Considering the above, Alchimia provides a FL framework with enhanced privacy-
preserving features for the FL system.  

This document consists of a technical report that includes the state of the art regarding 
Federated Learning together with privacy-preserving techniques. It also describes the 
tools and methods that will be developed during the Alchimia project. 
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1.1 Intended Audience 
This document focuses on the technical aspects of FL and performs an analysis of open-
source tools available. Furthermore, a new approach to implementing a FL framework is 
described. Therefore, the intended audience for this document includes ML engineers, AI 
engineers and data scientists who are interested in deploying an FL system since they can 
benefit from the study performed and the new FL framework implementation approach.  

Information about the FL paradigm can be consulted in this document, so it can be useful 
internally, for all project participants. 

 

1.2 Document Overview 
The rest deliverable is divided into the following sections: 

• Section 2 carries out an analysis of the state of the art of the FL paradigm. It 
provides research on challenges present in this approach, and the different 
solutions in terms of system architecture and FL learning aggregations. Finally, a 
description of the main open-source FL frameworks is given. 

• Section 3 provides a description of the main methods for Privacy-Preserving 
together with a comparison of the different FL frameworks presented in Section 2 
considering the functionalities they present from a Privacy-Preserving perspective. 

• Section 4 presents the FL framework proposal for this project. It explains the 
philosophy behind the framework and describes the core components of the 
implementation.  

• Section 6 provides a prototype example applying FL in a scenario with 2 
participants and one central server for training a Deep Learning (DL) model. 

• Section 6 presents the conclusions reached in this document together with next 
steps. 
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2 Federated Learning 
Federated Learning, an innovative approach to decentralized machine learning, has 
gained considerable attraction in recent years as a transformative solution to privacy and 
data security concerns in AI-driven applications. FL allows multiple entities, such as 
organizations with distributed facilities or individual devices, to collaboratively train a 
shared global model while keeping their raw data localized and secure. This approach 
effectively avoids the need to collect a vast amount of data from different devices located 
in distinct places and transfer the data to a central server for training. By decentralizing 
the training process, Federated Learning not only preserves data privacy but also 
minimizes data transfer overhead, making it an efficient and resource-saving alternative. 
Furthermore, the collaborative nature of FL empowers organizations to leverage the 
collective intelligence of diverse sources without compromising data security. 

The FL training process typically begins with a global model being initialized on a central 
server or aggregator. In this setting, each participating entity, e.g., a facility or a device, also 
known as the client, performs local model training using its own data. Instead of sharing 
raw data, only model updates or gradients are transmitted to the central server. Finally, in 
each iteration, the server aggregates the individual client models to obtain a new server 
model and sends the current version of the machine learning model to the clients. 

This collaborative, privacy-preserving approach empowers organizations to leverage the 
collective intelligence of diverse sources without compromising data security. 

FL approaches present high versatility and can be adopted in diverse use cases and 
scenarios, including the manufacturing or metallurgical sector. In manufacturing, factories 
and industrial facilities can leverage the power of FL to optimize production processes, 
enhance quality control, and predict equipment failures by collaboratively training AI 
models using data from different production lines or machines. By training local models 
locally, FL enables manufacturers to maintain data privacy and security while still 
benefiting from the collective knowledge of the entire ecosystem. 

Despite its numerous benefits, FL also presents challenges that must be addressed to 
ensure the successful implementation and adoption of this paradigm. 

 

2.1 Challenges 
This section describes key challenges faced in the implementation and deployment of FL 
systems.  

Table 1 : Key challenges in Federated Learning 

Challenge Category Description 

Data Poisoning Privacy/Security Malicious participants may inject poisoned data 
or modify local model updates to compromise 
the global model integrity. [2] 

Model Inversion Privacy/Security Model updates could potentially reveal 
sensitive information about individual data 
points, leading to privacy breaches. 
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Challenge Category Description 

Membership 
Inference 

Privacy/Security Analysing model updates exchanged during FL 
can enable adversaries to infer whether specific 
data points were part of participants' training 
datasets, compromising data privacy. [3] 

Sybil Attacks Privacy/Security Malicious participants may create multiple 
identities to gain disproportionate influence 
over the model aggregation process, distorting 
the global model. [4] 

Data Heterogeneity Model Convergence Coordinating the training process across 
entities with varying data distributions and 
computational capabilities may hinder model 
convergence. [5] 

Training Process 
Coordination 

Communication Some participants may have intermittent 
connectivity or varying update schedules, 
leading to asynchronous training. 

Communication 
Overhead 

Communication Frequent model updates and aggregations can 
lead to increased communication overhead, 
impacting the efficiency of FL in resource-
constrained environments. [6] 

 

2.2 Federated Learning Systems 
FL systems can be categorized based on the structure and organization of the participants 
and the data distribution. The following subsections describe the main FL systems. 

 

2.2.1 Centralized 

A centralized FL system is the most widely used architecture. All the participants send 
their local model updates directly to a central server, also known as the aggregator. The 
central server performs the model aggregation and updates the global model, which is 
then redistributed back to all participants for the next round of training.  

This schema allows adopting simplified communication since all communication between 
server and clients goes through a single point, making communication management and 
coordination straightforward. Furthermore, as the server has access to all participant 
updates, it can compute the aggregated model efficiently. 

However, the simplicity of this architecture presents some drawbacks. Whether the 
central server experiences an issue or goes down the entire FL process may be affected. 
Communication also has its limitations. All participants must communicate with the server 
which can create a communication bottleneck. Finally, as the number of participants 
increases, the FL system may face scalability problems. 
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Figure 1. Centralized FL architecture 

 

2.2.2 Decentralized 

In a decentralized FL architecture, participants communicate and exchange model 
updates directly with each other without the need for a central server. Clients form peer-
to-peer networks, and model aggregation is achieved through consensus algorithms or 
federated averaging techniques.  

 
Figure 2. Decentralized FL architecture [7]. 

This architecture enhances privacy since participants do not have to share individual data 
with a server. It also increases robustness and resilience to single points of failure, as there 
is no central entity that can disrupt the entire system. If one of the participants fails, it does 
not affect the whole FL procedure. Moreover, this approach is scalable by default since it 
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does not need big changes when the number of participants increases, and the 
communication bottleneck is removed. 

Despite the advantages presented by decentralized architecture, there are some 
challenges when adopting this type of scheme. Due to the absence of a central server to 
manage the training process, it becomes impossible to control it and the possibility of 
suffering client drift 1, imbalance data and synchronization issues when providing model 
updates exist.  

2.2.3 Hierarchical 

Hierarchical FL consists of a multi-level architecture where participants are organized into 
hierarchical groups. Within each group, local model training and aggregation are 
performed as in traditional FL. Nevertheless, instead of sending individual model updates 
to a central server, groups of participants send the updates to local aggregators which are 
responsible for aggregating the group model updates. The local aggregations are then 
redistributed to a global aggregator which computes the unique global model. 

 

 
Figure 3. Hierarchical FL overview. 

The main advantage of the hierarchical approach is the scalability. Clients can be 
organized into different groups reducing communication overhead and aggregation 

 

 

 

 
1 Client drift is defined as the situation when due to data heterogeneity from different FL participants appears a drift between 
local optimization and global optimization. [34] 
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complexity compared to centralized architecture. It also provides flexibility in terms of 
adding or removing nodes easily which makes the system efficient.  

The disadvantages of such a system are the communication redundancy and privacy 
overhead. Model updates must be calculated and communicated multiple times as they 
are moved to the top of the hierarchy resulting in communication redundancy. Also, 
privacy mechanisms are intensive tasks in terms of resources and are required every time 
the model updates are moved between aggregators. Therefore, the privacy protocols 
must be repeated several times in each round. Finally, synchronization across different 
levels of hierarchy may increase the complexity. 

2.2.4 Vertical and Horizontal FL 

FL systems can be categorized based on data distribution scenarios. Vertical and 
Horizontal FL refers to how data is partitioned across different participants. 

Generally, it is assumed that data from all participants present different numbers of 
samples with the same features which is the case of Horizontal FL, as shown in Figure 4. 

 

 
Figure 4. Horizontal FL example [8]. 

  

However, in some cases, participants may have different features referring to the same 
entity. FL systems that can afford these scenarios are known as vertical FL systems. Below 
is shown an example of this partition. 
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Figure 5. Vertical FL example [8].  

 

2.2.5 Cross-Silo and Cross-Device FL 

Categorization of FL systems can be done by analysing the structure of data. Thus, if data 
is distributed across multiple devices or data silos.  

In Cross-silo FL, multiple autonomous organizations or data silos collaborate to compute 
a global model without sharing the raw data. Each organization keeps control of its data, 
ensuring privacy and security. On the other hand, Cross-device FL enables the 
computation of a global model from multiple devices owned by a single organization. 
Each device becomes a participant in the FL process. 

 

2.3 Aggregation Algorithms 
As described in previous sections, the central server plays a critical role in the FL system. 
It is responsible for aggregating the local model updates provided by all participating 
devices or facilities. The process of aggregating these updates is crucial in determining 
the quality and performance of the resulting global model. There are different aggregation 
approaches available in the literature. Below are described the main strategies. 

2.3.1 Main Aggregation Strategies 

Among all aggregation strategies available in the literature, Federated Averaging 
(FedAvg), Federated Weighted Averaging (FedWeightedAvg) and Federated Stochastic 
Gradient Descent (FedSGD) are the most widely used algorithms. 

The idea of the FedAvg algorithm [1] consists of training a shared global model by 
averaging the model updates contributed by participants. The algorithm can be 
formulated as: 

𝑤𝑡+1 =
1

𝑁
∑ 𝑤𝑡+1

𝑖

𝑖=1:𝑁

 

Where: 

• N is the total number of participants in the FL system. 

• 𝑤𝑡+1
𝑖  represents the local model weights of the participant i at time step t+1. 
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• 𝑤𝑡+1 consists of global model update at time step t+1. 

The central server aggregates local model updates using simple averaging resulting in a 
global model. By averaging the model updates, FedAvg ensures each participant's 
contribution to influence the global model. As more rounds of training are performed, the 
global model becomes more accurate and representative of the entire dataset. 

 

Despite FedAvg efficiency, this strategy presents some limitations in specific scenarios: 

• Data Heterogeneity. FedAvg assumes all participants have similar data 
distributions and sizes. However, data collected by different participants could be 
diverse due to variations in participant characteristics. FedAvg may lead to a 
suboptimal global model in this type of situation. 

• Fairness. FedAvg treats all local model contributions equally during the 
aggregation without considering the data quality or the importance of the FL 
system. This procedure may result in unequal representation of participants. 

• Communication Overhead. Although communication overhead is reduced 
compared to transmitting raw data to the central server, FedAvg involves 
exchanging model updates between participants and the central server in each 
training round. This communication can become a bottleneck, affecting the 
efficiency and scalability of the system. 

• Convergence Rate. The averaging approach may be slower than traditional 
stochastic gradient descent used in centralized training in terms of convergence 
rate.  

 

FedWeightedAvg is a variation of FedAvg designed to overcome data heterogeneity and 
fairness issues. This variation assigns individual weights to each participant during the 
aggregation of model updates. These weights are commonly based on various factors, 
e.g., data volume, data quality or device capabilities.  

By introducing individual weighting, FedWeightedAvg aims to provide more importance 
to those participants that present higher data quality or better device capabilities, allowing 
the local model updates to have higher relevance when computing the global model. 

Finally, the FedSGD strategy emerged aiming to apply distributed SGD [9] in a federated 
approach2 and can be considered an extension of FedAvg since instead of averaging the 
full model updates from participants, the central server aggregates only the gradients 
computed on the local datasets. This variation stands out FedAvg in communication 
overhead and convergence rate. By aggregating only the gradients computed by the 
participants, the communication overhead is reduced since gradients are typically smaller 
(in terms of storage bytes) than the entire model parameters. This is due to different 

 

 

 

 
2 Distributed vs Federated approach: Main difference is that in distributed training a large, centralized dataset is divided into 
smaller subsets and distributed across multiple computed nodes while in federated training data remain decentralized and 
kept locally on participants. 
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reasons such as the sparse nature of gradients, meaning that many of their components 
are close to zero and can be further compressed or optimized for storage.  Also, FedSGD 
can achieve faster convergence due to it avoids the averaging approach. 

 

2.3.2 Alternative Strategies 

This section briefly describes some of the alternative aggregation strategies present in the 
literature. 

Table 2: Alternative aggregation strategies 

Aggregation 
Strategy 

Description 

FedPer [10] This approach proposes to incorporate personalization layers into the 
model. Thus, the DL model is divided into two parts. The base layer and 
the personalization layer. Base layers are trained through FedAvg or 
similar variation while personalization layers are only trained from local 
data. The objective of this approach is to mitigate the effects of data 
heterogeneity. 

FedMeta [11] FedMeta aims to handle statistical and systematic challenges in 
collaborative training ML models in a federated scenario. This method 
proposes to share a parameterized algorithm (meta learner) instead of 
a global model. The key idea of this approach is that by sharing meta-
information, the global model can be shaped in a way that facilitates 
faster adaptation. 

FedProx [12] FedProx can be seen as a variation of FedAvg which addresses 
heterogeneity issues in federated networks by adding a proximal term 
on each aiming to improve the stability of the method. 

FedPAQ [13] This method relies on three key features: i) periodic averaging where 
models are updated locally and only periodically averaged at the 
central server; ii) partial participation where only a fraction of 
participants train in each round; iii) quantized message-passing of 
participant updates before uploading them on the central server. This 
approach reduces the communication overhead issue present in FL 
scenarios. 

 

2.4 Federated Learning Frameworks 
There are several open-source FL frameworks providing tools to implement distributed 
ML models in different scenarios.  

One such framework is Tensorflow Federated (TFF) [14], developed by Google, which 
offers a flexible and scalable approach, allowing users to build and simulate FL algorithms 
in Python. Another popular framework is PySyft [15], developed by OpenMined, which 
focuses on privacy-preserving ML. Federated AI Technology Enabler (FATE) [16] is another 
open-source framework tailored for industrial applications. It implements secure 
computation protocols based on homomorphic encryption and multi-party computation. 
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Flower [17] is one of the most widely used open-source FL frameworks. It is an ML 
framework agnostic, flexible and easy to use and allows for adding privacy mechanisms. 
An additional FL open-source framework is PaddleFL [18]. It allows deploying FL systems 
in large-scale distributed clusters. FedML [19] provides an ML platform that enables 
secure FL and analytics, among others. The final framework analysed in this deliverable is 
LEAF [20], a modular benchmarking framework for learning in federated settings. 

The following sections provide a brief description of these frameworks with their main 
features. 

 

2.4.1 TensorFlow Federated (TFF) 

TFF3 aims to enable FL research and experimentation. It allows us to simulate algorithms 
and test new ones. The interfaces are organized into two main layers: Federated Learning 
API and Federated Core API. Federated Learning API offers a set of high-level interfaces 
to use algorithms included in the framework, while Federated Core API provides low-level 
interfaces for implementing algorithms by combining Tensorflow with distributed 
communication. 

Its main features are: 

• Good integration with Tensorflow 

• Provides base classes for FedAVG and FedSDG. 

• Allows applying Differential Privacy. 

However, TFF presents some limitations: i) does not support vertical data splitting and ii) 
the FL mode is not implemented. 

The architecture of TFF is shown in Figure 6. It presents the strategy layer on the top where 
the FL algorithms are implemented. Then, the security layer enables the application of the 
Differential Privacy mechanism. Finally, the model layer presents all methods for creating 
DL models. 

 

 

 

 
3 https://github.com/tensorflow/federated 
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Figure 6. TFF architecture overview [21]. 

2.4.2 PySyft 

PySyft4, developed by OpenMined, is an FL tool focused on secure DL enabling to apply 
different mechanisms such as Differential Privacy or Secure multi-party.  

This framework allows training FL models developed using both Tensorflow and PyTorch. 
Also, it offers the possibility to split the data vertically and horizontally. Finally, OpenMined 
presents an ecosystem that can be used together with PySyft to add functionalities and 
overcome some limitations. PySyft models can be used on Android and iOS by using 
KotlinSyft and SwiftSyft projects, respectively. Although it only supports simulation mode, 
developers can integrate other projects such as PyGrid to support FL mode. 

The architecture of PySyft is shown below. The strategy layer allows training models and 
supports both vertical and horizontal partitions. The security layer enables to apply several 
security mechanisms. Finally, run-time is compatible with Tensorflow and PyTorch [22] 
frameworks.  

 
Figure 7. PySyft architecture overview [15]. 

 

 

 

 

 
4 https://github.com/OpenMined/PySyft 
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2.4.3 FATE 

FATE5 is an open-source project initiated by WeBank’s AI Department to provide a secure 
computational framework supporting a federated AI ecosystem [16]. It is designed for 
industrial applications.  

It is compatible with main DL frameworks (Tensorflow and PyTorch) and supports 
horizontal and vertical FL approaches. Regarding security, FATE supports Secure Multi-
party Computation (SMPC) protocols and encryption methods (explained in section 3). 
Furthermore, FATE can be deployed in simulation and federated modes. 

One of the most important inconveniences that FATE presents is that developers must 
modify the source code of FATE to implement custom FL algorithms which adds 
complexity to adapt FATE to all possible scenarios. 

Figure 8 shows the FATE architecture overview. The main components are: 

• FATE-Cloud includes a cloud manager responsible for managing the complete 
Cloud deployment. 

• FATE-Board: Visualization tool focused on FL tasks and models. 

• FATE-Flow: Task scheduler for managing FL lifecycle. 

• FATE-Serving: Scalable online FL model serving. 

 

 
Figure 8. FATE architecture overview [16]. 

 

 

 

 
5 https://github.com/FederatedAI/FATE 
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2.4.4 Flower 

Flower6 is an open-source framework for FL that simplifies the development and 
deployment of FL systems. It provides a high-level API for building FL algorithms and 
systems. 

Among key features that stand out: 

• Abstraction of FL components. 

• ML framework agnostic. 

• Support of heterogeneous devices. 

• Scalability. 

• Flexibility for customization and research. 

The flower library facilitates the implementation of various FL algorithms, including 
FedAVG, FedSGD, and others. It abstracts the communication and coordination aspects of 
FL, allowing developers to focus on algorithm design and experimentation. 

 
Figure 9. Flower framework architecture [23]. 

2.4.5 PaddleFL 

PaddleFL7 uses Paddle (PArallel Distributed Deep LEarning) [24], a DL platform that covers 
DL frameworks, basic model libraries, end-to-end development kits, tools, and 
components. PaddleFL can process data vertically and horizontally. Algorithm 
implementation for each approach is decoupled and the algorithms available for each 
approach are not the same. PaddleFL can be deployed in large-scale clusters. The 
protocol used for communicating with servers and workers is ZeroMQ [25], a high-
performance, asynchronous messaging library that provides sockets for applications or 
processes. 

 

 

 

 
6 https://github.com/adap/flower 

7 https://github.com/PaddlePaddle/PaddleFL 
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The main drawback of PaddleFL is that it uses a little-known DL platform with low support 
from the community. The PaddleFL architecture overview is depicted in Figure 10. 

.  

 

Figure 10. PaddleFL architecture overview [21]. 

 

2.4.6 FedML 

FedML8 [26] provides an end-to-end toolkit to enable the development of FL algorithms. 
The key features of FedML are: 

• Support of diverse FL computing paradigms. 

• Support of diverse FL configurations. 

• Standardized FL algorithm implementations. 

• Standardized FL benchmarks. 

• Fully open and evolving. 

The FedML library organization is depicted in Figure 11 and presents two key components: 
FedML-API and FedML-core. 

FedML-core decouples distributed communication from model training. The distributed 
communication module is responsible for low-level communication. The backend is 
based on MPI (Message Passing Interface)9. Furthermore, this module offers security 
functionalities. The model training module is built on PyTorch, so developers can create 
the trainers according to their needs. 

 

 

 

 
8 https://github.com/FedML-AI/FedML 

9 https://pypi.org/project/mpi4py/  

https://pypi.org/project/mpi4py/


D3.1 – Federated Learning infrastructure implementation  
 

 

Version 1.0 I  ALCHIMIA © 22 

 

 

Fed-API offers several FL strategies, and, with the support of FedML-core, new algorithms 
can be also implemented. In addition, FedML-API offers an ML system practice that 
consists of separating the development of models and data from algorithms.  

FedML also provides other functionalities for supporting common FL scenarios such as 
FedML-Mobile and FedML-IoT which are focused on mobile and IoT applications, 
respectively. 

 

 

Figure 11. Overview of FedML architecture [26]. 

2.4.7 LEAF 

LEAF10 is an open-source modular benchmarking FL framework tool. The main features 
provided by this framework are: 

• It enables reproducible science. 

 

 

 

 
10 https://github.com/TalwalkarLab/leaf 
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• It provides granular metrics. 

• It is modular. 

• Creation and curation of federated datasets. 

The main drawback of this framework is the lack of documentation and low support from 
the community.  
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3 Privacy-Preserving Federated Learning 
Federated Learning has emerged as a promising approach to enable collaborative 
learning across distributed devices without revealing the underlying training data. 
However, simply retaining data and computations on individual devices, as done in FL, 
does not fully guarantee privacy. The exchange of model parameters among participants 
still poses a risk, as these parameters may accidentally contain sensitive information, 
making the system vulnerable to privacy attacks. For example, in [27] the authors indicate 
the potential risk of sensitive text patterns, such as credit card numbers, being extracted 
from a recurrent neural network trained on users' data. Therefore, additional mechanisms 
are necessary to protect data disclosure from attack strategies, which are subject to 
privacy-preserving methods in FL.  

Generally, privacy preservation techniques are focused on two main objectives: privacy of 
the training dataset and privacy of the local model parameters which are exchanged with 
other nodes and/or a centralised server. The primary approaches that can be employed 
in FL for privacy protection are Differential Privacy, Homomorphic Encryption, Secure 
Multiparty Computation, and Private Aggregation of Teacher Ensembles (PATE). These 
approaches are described in the following sections. 

 

3.1 Differential Privacy 
Differential Privacy (DP) [28] is a mechanism for privacy preservation that injects random 
noise into true outputs using rigorous mathematical measures. By using this technique, 
data patterns corresponding to the model, parameters, or training data become 
impossible to disclose. However, it is important to consider the trade-off between privacy 
guarantee and efficiency since adding too much noise and improper randomness can 
significantly result in lower performance of the model.  

Generally, differential privacy can be divided into Local Differential Privacy (LDP) and 
Global Differential Privacy (GDP). 

Local Differential Privacy (LDP) adds random noise to each client's data before 
transmitting it to a central server or aggregator. The addition of noise happens directly on 
the individual user or at the data source itself, independently of other users. The central 
server then aggregates the perturbed data and computes statistical analysis while 
providing privacy guarantees. 

 
Figure 12: Local Differential Privacy diagram 



D3.1 – Federated Learning infrastructure implementation  
 

 

Version 1.0 I  ALCHIMIA © 25 

 

 

Global Differential Privacy (GDP) operates by adding random noise to the aggregated 
results after data is collected and processed at the central server or aggregator. Instead 
of perturbing individual data points, each user sends their data to the aggregator node 
without adding noise and the aggregator transforms it. Global private systems tend to be 
more accurate since all the analysis is implemented on the clean (noise-free) data, and 
only at the end of the process the noise is added. 

 
Figure 13: Global Differential Privacy diagram 

 

3.2 Homomorphic Encryption 
Homomorphic encryption is another approach for privacy preservation in Federated 
Learning. This technique allows to perform computation on an encrypted form of data 
without the need for a secret key to decrypt the data [29]. The operation is equivalent to 
implementing the computation on the original unencrypted data. In simpler terms, it 
enables data to remain encrypted while still being usable for certain computations. 

The term “homomorphic” derives from algebraic structures and refers to the property of 
preserving mathematical operations on encrypted data. There are three main types of 
homomorphic encryption techniques:  

Partially Homomorphic Encryption (PHE) allows only specific types of mathematical 
operations (e.g., addition or multiplication) to be performed on encrypted data. This limits 
the scope of computations that can be done. 

Somewhat Homomorphic Encryption (SHE) can be used with a larger set of 
mathematical operations on encrypted data. Although, it has practical limitations on the 
number of operations or their complexity. While it may not support all computations, it is 
more flexible than PHE. 

Fully Homomorphic Encryption (FHE) [30] enables to perform of any function on 
encrypted data that could be computed on the plaintext data directly. This level of 
flexibility is incredibly valuable for privacy preservation.  
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3.3 Secure Multiparty Computation  
Secure Multi-party Computation (SMPC) [31] motivation is to compute a function over a 
dataset owned by multiple parties using their own inputs so that any party learns nothing 
about others’ data. If there are 𝑛 parties 𝑃1, 𝑃2,…, 𝑃𝑛 that own 𝑛 pieces of private data 𝑋1, 
𝑋2,…, 𝑋𝑛, any arbitrary function 𝑓(𝑋1, 𝑋2,…, 𝑋𝑛) = (𝑌1, 𝑌2,…, 𝑌𝑛) can be applied so that the only 
information each party has access is the result (𝑌1, 𝑌2,…, 𝑌𝑛) and its own inputs 𝑋𝑖 . SMC often 
utilizes Zero-Knowledge Proofs (ZKPs) to demonstrate computation integrity and prove 
that any specific information is revealed. These proofs allow a party to verify that they 
have followed the rules of the protocol and provided the correct input without disclosing 
the input itself. Sometimes this property can involve complex operations that are not very 
efficient and lead to increased computational overhead.  

SMC is an active area of research, and ongoing developments are improving its efficiency 
and applicability. 

3.4 Private Aggregation of Teacher Ensembles (PATE) 
A common approach for privacy preservation is the Private Aggregation of Teacher 
Ensembles (PATE) [32] which introduces the teachers-student scheme. This method 
combines multiple learning models used as teachers for a student model. 

Each teacher trains a model with local/private data. The teachers might have different 
privacy-preserving mechanisms. The predictions made by the teacher models are 
aggregated adding some noise. The noise introduced during aggregation helps protect 
individual data privacy. The aggregated predictions are then used as a labelled dataset to 
train a student. 

The student learns to predict an output chosen by noisy voting (from the aggregation) 
among the teachers and cannot directly access an individual teacher or the underlying 
data or parameters. In Figure 14 the architecture of PATE is displayed. 

Initially, multiple teacher models are trained on separate and non-overlapping subsets of 
the sensitive data. Following this, a student model is trained using auxiliary, unlabelled 
non-sensitive data. The training process involves using the aggregate output from the 
ensemble of teacher models, allowing the student to learn and mimic the ensemble's 
behaviour accurately. 

The rationale behind this approach is to ensure that the student model does not rely on 
specific details of any individual sensitive data point (such as any user’s information). As a 
result, the privacy of the training data is safeguarded, even if potential attackers can 
observe the internal model parameters of the student. 
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Figure 14: Private Aggregation of Teacher Ensemble diagram 

3.5 Comparison of Federated Learning frameworks 
considering privacy preservation 

 

Sections 2 and 3 provided an initial description and analysis of the Federated Learning 
paradigm, the main frameworks and privacy mechanisms employed. In Table 3: Main Pros 
and Cons of the Federated Learning frameworks a comparison of the Federated Learning 
frameworks is conducted, and their pros and cons are presented. 

 

Table 3: Main Pros and Cons of the Federated Learning frameworks 

Framework Pros Cons 

FATE 1. Production Ready. 

2. Provides many FL 
algorithms. 

3. Containerized support 
with Docker/Kubernetes. 

1. No differential privacy 
algorithms. 

2. Developers must modify 
the source code of FATE to 
implement custom FL 
algorithms. 

3. Does not use GPUs for 
training. 

 

Flower 1. ML Framework agnostic. 1. No differential privacy 
algorithms. 
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Framework Pros Cons 

2. Easy to transform ML 
pipelines to FL. 

3. Supports a great number 
of clients. 

4. Very customizable. 

 

PaddleFL 1. Multiple privacy-
preserving algorithms 
such as DP, MPC and 
secure aggregation. 

2. High-level interface for 
some basic and well-
known FL aggregators 

Containerized support 
with Kubernetes 

1. Very small community and 
contributors. 

2. Difficult to use because it 
uses a little-known DL 
framework. 

FedML 1. No limitations on using 
edge devices including 
smartphones and IoT 
devices. 

2. Multi-GPU training 
support 

3. Growing community. 

1. No privacy-preserving 
techniques, only secure 
aggregation is 
implemented. 

Leaf 1. Contains basic FL 
mechanisms such as 
Federated Averaging 
Aggregator. 

2. Very adaptative. 

 

1. Doesn’t provide good 
documentation or tutorials. 

2. No benchmarks for privacy 
preservation in an FL 
setting. 
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4 Alchimia Federated Learning 
The system requirements and the system architecture of Alchimia will be explained in D2.1 
Requirements and human-centric recommendations and D2.2 ALCHIMIA architecture, 
respectively. Figure 15 shows the architectural scheme of the project. The features of the 
architecture that have the most significant impact on the FL framework are the 
communication between the central server and the clients and the support of different 
privacy-preserving techniques. 

The communication between the central server and participants is based on Apache 
Kafka, a distributed event-streaming platform for high-performance data pipelines, 
streaming analytics, data integration, and mission-critical applications [33]. Thus, the FL 
framework must support this type of communication to fulfil this requirement. 

Regarding privacy-preserving support, the framework should be able to apply the main 
techniques, e.g., PATE, Differential Privacy or Secure Sum. 

Therefore, the FL framework to use in this project must offer a high degree of flexibility so 
that all the constraints are overcome.  

 
Figure 15. Alchimia system architecture. 

In section 3, a comparison among the principal open-source FL frameworks has been 
provided. However, none of them aligns perfectly with the requirements of the project, 
either due to inadequate support for all privacy-preserving techniques, the inability to 
establish communication between server and participants through Apache Kafka or 
another platform based on pub/sub pattern, or due to their lack of flexibility.  
For these reasons, the FL system will be built upon the Atos FL framework. A basic FL 
framework that needs to extend its functionalities to support Kafka-based communication 
and privacy techniques, but given its flexibility, it stands as the optimal choice for meeting 
the constraints of this project. These framework will be extended and tailored to the needs 
of Alchimia project and use-cases. 
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4.1 Design 
The main open-source FL frameworks available have been described in the previous 
sections. However, no one fits all use cases in general. Therefore, the design of the AtosFL 
framework is presented in this section. With the development of this framework, the aim 
is to implement a flexible tool that can be adjusted to any FL scenario.  

 

4.1.1 Pipe and Filter Pattern 

The main architectural pattern of AtosFL is pipe and filter. It is a software design pattern 
used to process data by breaking down a complex task into a series of smaller, 
independent processing steps called filters. These filters are connected between them 
through pipes.  

Each filter in the pipeline performs a specific operation on the data. The output of the filter 
becomes the input of the following filter until data is processed by all filters. Figure 16 
depicts the pipe and filter pattern overview. 

 

 
Figure 16. Pipe and filter pattern scheme. 

The key features of using this architecture are the following: 

• Loose and flexible coupling components. Thus, different components can be 
implemented and combined among them in different ways without making any 
assumption on how they are being used. 

• Independency because of loose coupling. This way filters can be changed without 
modifications in other filters. 

• Allows parallel processing. 

• Filters can be considered “black boxes”. Users do not need to know the inner 
workings. 

• Reusability of filters. 

As described in previous sections, FL is an approach that enables ML training across 
multiple participants while keeping data decentralized and secure. In a centralized FL 
scenario, each participant should perform at least the following steps: 

1. Load local data. 

2. Train the local model using local data. 

3. Extract local weights. 

4. Send local weights to the central server. 

5. Receive global weights from the central server. 

6. Update local weights with global weights. 
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This process can be represented as a pipeline as shown in Figure 17. Therefore, it can be 
implemented following the pipe and filter pattern. 

 
Figure 17. FL Client pipeline. 

Regarding the central server perspective, these are the minimal steps needed: 

1- Receive local weights from participants. 

2- Aggregate local weights to compute global weights. 

3- Broadcast global weights to all participants. 

 
Figure 18. FL server pipeline. 

4.1.2 Components 

The core component of the framework is called Pod. A Pod implementation ignores the 
distributed aspect of the FL logic by only focusing on small pieces of functionality, e.g., 
the weights aggregation of the federated server. 

A Pod defines wires to interact with the exterior, this entity is the listener design pattern. 
There are two types of wires: input and output. The main difference is that the pod 
provides a handler for the input wire which executes a function and then forwards the 
output through the output wire if needed to connect to the next pod. Therefore, pods can 
connect between them using input and output wires. 

Therefore, everything can be described in terms of Pods. Custom functionalities to 
address scenario requirements can be provided by extending pods. Thus, defining new 
wires and assigning default handlers to them. For example, in a client-server federated 
approach, client and server pods could be present. 

The server Pod may define an input wire called /update that receives the parameter 
vectors trained by the participants. Once all participants have provided their parameters, 
the server can perform the aggregation and compute the global parameter vector. This 
global vector could be forwarded through an output wire called /broadcast that gets 
connected to the participants. 

The client Pod could present an input wire called /update that receives the global 
parameter vector from the server. When this interface is triggered, the client can update 
its local model and perform a training round with local data and then send the local 
parameters through an output wire called /trained which connects to the server. 

Using this approach, Pods can be implemented to cover communication protocols to 
enable participants to share information among themselves (decentralized FL) or with the 
central server (centralized FL). AtosFL supports HTTP communication protocol. However, 
more protocols support can be added, especially Apache Kafka. 

Regarding privacy-preserving, this concept refers to maintaining the local model 
parameters of the participants private, as described in section 3. Different privacy 
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algorithms can be implemented following the POD philosophy. For example, the 
Differential Privacy method could be supported by implementing a Pod that receives the 
local weights and adds noise to them before sending the local updates to the server.  

The following section provides a description of the implementation of Kafka Pod. 

 

4.1.3 Communication 

Kafka was selected as the underlying communication protocol due to its robustness, 
scalability, and real-time data streaming capabilities. Kafka's robust storage mechanism 
ensures that messages are stored over time, allowing clients to retrieve missed updates 
when they come back online. This is particularly useful in scenarios where nodes may 
experience intermittent connectivity.  

The integration of Kafka within AtosFL involves the following components: 

1. Producers: Producers publish messages to specific Kafka topics representing 
different communication channels. 

2. Consumers: Consumers subscribe to relevant topics and receive messages in real 
time. 

3. Topics: Kafka topics serve as communication channels, organizing and 
categorizing messages for different aspects of the FL process such as model 
updates, data availability, or synchronization signals. 

Both clients and the server function as producers and consumers. Clients are responsible 
for transmitting their individual local models, whereas the server sends the aggregated 
model as part of the communication process. A high-level diagram of the communication 
is displayed in Figure 19. 

 
Figure 19: Kafka-based communication overview 

Kafka Pod must communicate with other local pods (e.g., client pod) and with the Kafka 
broker so that it can subscribe to topics and publish messages. Therefore, this pod needs 
wires to forward messages to local pods and to the broker.  

The Kafka Pod interfaces that are at least necessary in a common FL scenario from the 
perspective of FL clients are as follows: 
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• Topic subscription to receive global weights. 
• Local output interface to forward global weights to the client Pod. 
• Local input interface to receive local updates from the client Pod. 
• Output interface to publish the local update to the Kafka broker. 

From a server perspective, the necessary interfaces are: 

• Topic subscription to receive local updates from each participant. 
• Local output interface to forward the updates to the server Pod. 
• Local input interface to receive global weights from the server Pod. 
• Output interface to publish global weights to the Kafka broker. 

 
Figure 20 shows the concept. 
 

 

Figure 20. Kafka support through AtosFL. 
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5 Example 
An initial example was conducted making use of the AtosFL framework. The example 
focuses on predicting the steel grade produced by knowing the scrap characteristics 
(quality and quantity). The steel grade prediction is identified within Use Case 3: Determine 
Predictive Results offline of CELSA. The model that was developed serves as a mock-up 
of the models that will be developed for the Alchimia project.  

This example has been conducted simulating the Federated Learning training process. 
The dataset has been divided by the number of clients selected for the training. This 
approach allows us to achieve meaningful insights and assess the feasibility of Federated 
Learning for the Alchimia project. 
 

5.1.1 Dataset 

The dataset used was provided by CELSA. It contains data from three months measured 
at the CELSA plant located in France. Among the multiple data that were provided, two 
CSV files were used for this example. The files contain the information related to the 
charged scrap and the steel analysis.  

In the preprocessing stage, some transformations were applied to the data such as 
merging the files by casting ID, transforming the steel quality into category format, and 
aggregating the scrap types by casting ID. Finally, the variables that were selected for 
training the model are displayed in Figure 21. 

The columns in the dataset are: 

• QUALITY: Steel quality. Qualities are considered as integer numbers from 0 to 23.  

• WS0010- WS0100: Amount of scrap in kilograms (kg). Each column represents a 
different quality of scrap. 

 

 
Figure 21: Example dataset 

 
The columns of the training dataset are divided into target classes (quality) and the 
corresponding features.  
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The distribution of the classes is displayed in Figure 22. Notice that the imbalance of the 
classes may affect the performance of the model.  

 
Figure 22: Distribution of quality classes 

The number of clients selected for the Federated Learning training is set to 2, therefore 
the dataset is equally partitioned by this number. This partitioning was performed while 
trying to maintain the distribution characteristics of the original dataset, although, in future 
examples, unbalanced datasets will also be tested since they simulate the reality of 
different data available at each plant.  

5.1.2 Federated Learning strategy 

The AtosFL framework supports various strategies such as FedAvg and FedWeightedAvg. 
The strategy that was used in this approach is FedAvg. As explained in Section 2.3, the 
central server aggregates local model updates using simple averaging resulting in a 
global model. FedAvg ensures each participant's contribution to influence the global 
model.  

The number of rounds performed in the training is 10. This implies that each local model 
has been trained 10 times and aggregated at the central server generating a global model. 
For each training, a number of 100 epochs has been selected and a batch size of 128. 
Finding the optimal number of rounds for Federated Learning training leads to a more 
accurate and representative model of the entire dataset. 

 

5.1.3 Results  

In this section, we present the outcomes and insights extracted from the FL example 
conducted. The purpose of this example was to evaluate the effectiveness of the AtosFL 
framework ensuring the collaborative training of a model across distributed nodes. 

To compare the results of the model with and without the FL approach, initially, the model 
was trained in a standard way without making use of the FL framework. After, the same 
model was trained using the Federated Learning framework with a small group of client 
nodes. 

The model consists of a neural network created using the Keras library, which provides a 
high-level interface for designing and training these types of models.  

The neural network comprises 3 fully connected (Dense) layers. Figure 23 displays a 
diagram of the architecture of the network. The first two layers use the Rectified Linear 
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Unit (ReLu) activation function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). ReLu is one of the most widely used 
activation functions due to its simplicity and computational efficiency and often achieves 
better performance. 

The last layer of the network which serves as the output of the model uses the SoftMax 
activation function. SoftMax is commonly used for multi-class classification problems 
because it converts the network’s output values into probability values that sum up to 1. 
The number of outputs of the network is configured as 24 which is the number of steel 
quality classes present in the dataset. 

The loss function used for training the model is the Sparse Categorical Cross-entropy and 
the optimizer algorithm selected is Adaptive Moment Estimation (Adam). Last, for 
measuring the performance of the model the accuracy metric is monitored while training. 

In Figure 24 the code definition of the network is shown. 

 

Figure 23: Neural network diagram 

 
Figure 24: Neural network definition 

For developing the model without the Federated Learning approach, the complete 
dataset was used in the training stage. The training accuracy achieved with 100 epochs is 
46 %. 

For the FL approach, over a series of training rounds, the model's performance improved 
gradually. Allowing the model to learn from the data within the different nodes. In the last 
round, the model reached a training accuracy of 54 %. In Figure 25 a screenshot with the 
training logs is exhibited, notice the progression of the accuracy on each node is printed.  
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Taking into consideration that in the non-federated training process there is no more than 
one training round, the performance of the model could be higher if the number of epochs 
increases (as it is happening when FL rounds are added). 

A conclusion from the limited-scale example is that as we added more clients to the 
training process, the communication protocol continued to facilitate effective 
coordination and model updates. This indicates the capability of adding extra nodes in 
more complex scenarios. 

Lastly, the Kafka-based communication protocol demonstrated efficiency in transmitting 
updates between clients and the server. 

 
Figure 25: Federated Learning training logs 
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6 Conclusions 
This deliverable provided an analysis of the state of the art in the field of Federated 
Learning with the challenges still present when deploying an FL system. Moreover, a 
study of privacy-preserving techniques is designed to enhance privacy protection of 
sensitive information and prevent risks of attacks. Moreover, a brief description of the main 
open-source FL frameworks is given together with a comparison among them considering 
the supported functionalities, communication protocols and the offered privacy-
preserving techniques. 

The report also presents the FL framework that is going to be developed during the 
project. The design of the framework is focused on being as flexible as possible and that 
it can be easily adjusted to any FL scenario. In addition, the results of a demo where the 
application of the FL framework are provided. 

During the next steps of Alchimia's activities towards the design, development, and test 
of the whole FL system the following tasks will be addressed: 

• Complete FL framework development.  

• Integration of FL framework according to the specifications provided in D2.2 
ALCHIMIA architecture. 

• Deployment of the FL system following requirements provided in D2.1 
Requirements and human-centric recommendations.  
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